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Abstract

A meshless local Petrov-Galerkin (MLPG) method that uses radial

basis functions (RBFs) as trial functions in the study of Euler-Bernoulli

beam problems is presented.  RBFs, rather than generalized moving least

squares (GMLS) interpolations, are used to develop the trial functions.

This choice yields a computationally simpler method as fewer matrix

inversions and multiplications are required.  Test functions are chosen

as simple weight functions as they are in the conventional MLPG

method.  Compactly and noncompactly supported RBFs are considered.

Noncompactly supported cubic RBFs are found to be preferable.  Patch

tests, mixed boundary value problems, and problems with complex

loading conditions are considered.  Results obtained from the radial

basis MLPG method are either of comparable or better accuracy than

those obtained when using the conventional MLPG method.

Introduction

Meshless methods are developed to overcome some of the disadvantages of the finite element method

(FEM), such as discontinuous secondary variables across interelement boundaries and the need for

remeshing in large deformation problems (Atluri, Cho, and Kim, 1999; Atluri and Shen, 2002b; Atluri

and Zhu, 1998; Belytschko, Liu, and Gu, 1994; and Nayroles, Touzot, and Villon, 1992).  Recent litera-

ture shows extensive research on meshless methods and, in particular, the meshless local Petrov-Galerkin

(MLPG) method.  Two recent monographs (Atluri and Shen, 2002a; and Liu, 2002) summarize the status

to date.  Most literature published to date on the MLPG method presents variations of the method for C0

problems.  A comparatively limited amount of work (Atluri, Cho, and Kim, 1999; Donning and Liu,

1998; Gu and Liu, 2001a and 2001b; and Krysl and Belytschko, 1995) is reported on C1 problems.  The

additional degrees of freedom involved in C1 problems introduce levels of complexity that are difficult to

implement in meshless methods.  Gu and Liu present a local point interpolation method (LPIM) for static

and dynamic analysis of thin beams (Gu and Liu, 2001a).  Atluri, Cho, and Kim (1999) present an analy-

sis of thin-beam problems by using a Galerkin implementation of the MLPG method, in which a general-

ized moving least squares (GMLS) approximation is used to construct the trial functions, and the test

functions are chosen from the same space.  In Phillips and Raju (2002) and Raju and Phillips (2002,

2003a, and 2003c), an MLPG method is presented in which a GMLS approximation is used to construct

the trial functions; test functions are chosen from a different space.  Closer scrutiny of these formulations

shows that a large number of calculations are required to compute the first- and second-order derivatives

of the moving least squares (MLS) trial functions.  Hence, a computationally simpler alternative to the

MLS trial functions that provides the same accuracy as the MLS functions is preferred.

In this paper, the use of radial basis interpolation functions (see Powell, 1992; Wendland, 1999; and

Wu, 1995) as trial functions is explored in the MLPG formulation for beam problems.  The radial basis

functions (RBFs) and their implementation are simple, and the evaluation of the derivatives is much

simpler than for the traditional MLS approximations (Raju, Phillips, and Krishnamurthy, 2003b).  In the

present radial basis MLPG formulation (abbreviated hereafter as RPG), simple weight functions are

chosen as test functions, and Gaussian quadrature is used to integrate the weak form.  The effectiveness of

the RPG method is evaluated by applying the formulation to a variety of patch test and mixed boundary

value problems.
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The intent of this paper is to present an alternative to the MLS interpolation that may be more compu-

tationally efficient in the MLPG method for beam problems.  Currently, the MLPG method is more

computationally expensive compared to the FEM.  The objective of this work is not to improve the

computational efficiency of the MLPG method but rather to explore the feasibility of using RBFs as

interpolations in the method.

The outline of the paper is as follows:  First, the MLS interpolation used in the conventional MLPG

method is discussed as motivation for finding a simpler alternative.  Next, an overview of RBFs for C0

problems is presented, the shape functions obtained from radial basis interpolation are derived, and the

shape functions that are obtained when polynomial basis functions are included in the interpolation are

derived.  The MLS and radial basis shape function discussions are then expanded and repeated for beam

(C1) problems.  The system of algebraic equations developed from the local weak form of the governing

differential equation and the chosen trial and test functions is presented.  Patch test problems are used to

validate the RPG method for different choices of RBF, and the RPG method is applied to mixed boundary

value problems.  Finally, the method is applied to problems with complex loading and boundary

conditions.

C0 Interpolation Schemes

In this section, the MLS interpolation scheme used in the conventional MLPG method is discussed

first; then, two interpolation schemes involving RBFs are presented.  In the first scheme, RBFs alone are

used to construct the shape functions.  The second scheme is a hybrid that uses both RBFs and polyno-

mial basis functions to construct the shape functions.

The MLS Interpolation

An MLS interpolation is a scheme that fits a smooth function through an assumed set of fictitious

nodal values.  The interpolation is performed such that the sum of the least squares error between the

interpolated function and the fictitious nodal values is a minimum (Belytschko, Lu, and Gu, 1994; and

Nayroles, Touzot, and Villon, 1992).  A schematic of the MLS interpolation is presented in figure 1.

Moving least
squares fit

“Error”

x

ûj uj

Fictitious nodal values

u

Figure 1.  Moving least squares (MLS) interpolation.
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In one-dimensional problems, the C0 MLS shape function for node j can be constructed as follows.  In

the equations that follow, n is the number of nodes in the domain of definition of node j, and m is the

order of the polynomial basis function (Nayroles, Touzot, and Villon, 1992).  The shape function j  at

node j can be written as

j (x) = pT(x)[A] 1[B]( )
j
= pg (x) [A]

1[B]( )
gj

g=1

m
(1)

where pT(x)  is a polynomial basis function

 

[pT(x)] = p1(x), p2 (x), p3(x), …, pm (x)[ ]

= 1, x, x2, …, xm 1  (2)

and

[A] = [P]T[ ][P]

[B] = [P]T[ ]

(3)

In equations (3), [P] is an (n, m) matrix, and [ ] is a diagonal (n, n) matrix defined as

 
[P] = pT(x1) pT(x2 ) … pT(xn )

T
(4)

 

=

1(x)

2 (x)

n (x)

(5)

where 
 
j (x), j = 1,…, n,  is a weight function.  The first derivative of these shape functions is required

by the MLPG method and is given by (Atluri and Zhu, 1998; and Belytschko, Liu, and Gu, 1994)

j,x = pg,x [A]
1[B]( )

gj
g=1

m
+ pg [A] 1[B],x + [A],x

1[B]
gj

(6)

where ( ),x d ( ) /dx , and

[A],x
1
= [A] 1[A],x[A]

1 (7)

RBF Interpolation

The radial basis formulation for C0 problems is presented first.  The RBF provides a continuous inter-

polating function for u(x) as a linear combination of radial functions (Powell, 1992).  The interpolating
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function is

u(x) = Rj (x) a j
j=1

N
(8)

where Rj(x), the RBFs, are functions that are “centered” at each of the N scattered points, and aj are the

unknown coefficients, j  = 1, 2, …, N.  The RBF, Rj(x), are functions of distance r j and are defined as

Rj (x) = Rj (rj ) (9)

In two dimensions, the radial distance r j  can be expressed in terms of the Cartesian coordinates as

rj (x) = x x j( )
2
+ y y j( )

2
(10)

where xj  and yj  are the coordinates of node j.  Equation (8) can be written in matrix form for C0 problems

as

 
u(x) = R

T(x) a (11)

where

  

R
T(x) = R1(x), R2 (x), R3(x), …, RN (x)[ ]

a = a1, a2, a3, …, aN{ }
T

(12)

Forcing the interpolation of equation (8) to pass through the N scattered points, a set of equations to

determine the coefficients aj  in terms of nodal values uj  can be written as

RB a = u (13)

where

  
u
T
= u1, u2, u3, , uN( ) (14)

  

RB =

R1(x1) R2 (x1) RN (x1)

R1(x2 ) R2 (x2 ) RN (x2 )

R1(xN ) R2 (xN ) RN (xN )

(15)

Note that RB is an (N, N) matrix.  Here, u (uj, j = 1, 2, …, N) are the nodal values of u at the N scattered

points.  The unknown coefficients in equation (13) can be obtained as

a = RB
1 u (16)
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The interpolating function for u(x) in equation (11) can now be rewritten as

 

u(x) = R
T(x)RB

1
u = j (x)u j

j=1

N
(17)

The nodal shape functions are then

  

(x) = R
T(x)RB

1

= [ 1(x), 2 (x), 3(x), …, N (x)]
(18)

or

l (x) = Rk (x) kl
k=1

N
(19)

where kl are the elements of the matrix 
 
RB

1.   The shape function j(x) obtained through the above pro-

cedure satisfies the Kronecker Delta property at the nodes (Atluri and Shen, 2002a), that is,

j (xk ) = jk (20)

Note that the shape functions in equation (19) also satisfy the property

j (x)
j=1

N
= 1 (21)

only at the nodes.  As the number of nodes is increased, however, the shape functions in equation (19)

satisfy (Raju, Phillips, and Krishnamurthy, 2003b)

lim
N

 j (x)
j=1

N
= 1 (22)

everywhere in the domain.

In contrast to the MLS method, the derivatives of the shape functions are easy to evaluate by using

equation (19) as

l (x)
x

=
Rk
x kl

k=1

N

l (x)
y

=
Rk
y kl

k=1

N
(23)
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where

Rk
x

=
Rk
rk

rk
x

   ;   
Rk
y

=
Rk
rk

rk
y

(24)

with

rk
x
=
x xk
rk

   ;   
rk
y
=
y yk
rk

(25)

Some of the well-known classical radial functions are presented in table 1, in which (t j = r j/s j) and s j is

some normalizing distance.  Note that the shape parameter c in the RBFs (table 1) is user defined.  The

classical radial functions have two limitations: (1) the matrix RB in equation (15) may not be positive

definite, and (2) the functions do not possess local support, that is, the changes in a single location (xj, yj)

affect the entire interpolation.  To overcome these limitations, compactly supported positive definite

radial functions were proposed (Wu, 1995).  These functions were derived by using a constraint to

guarantee positive definiteness of the interpolation matrix RB.

Table 1. Classical Radial Basis Functions (RBFs)

Classical RBF Equation

Linear Rj (x) = ct j

Cubic Rj (x) = (t j + c)
3

Thin plate spline Rj (x) = t j
2 log(ct j

2 )

Gaussian Rj (x) = e
ct j
2

Multiquadric Rj (x) = t j
2
+ c2

*
See also tables 5.2 and 5.3 (Liu, 2002).

The compactly supported functions assign zero weight to all points not belonging to the compactly

supported region, thus leading to a sparse interpolation matrix.  Adapted compact RBFs are used here:

Compact-I:

Rj (x) =
(1 t j )

5 (8 + 40t j + 48t j
2
+ 25t j

3
+ 5t j

4 ),   0 t j 1

0                                                                t j >1
(26)

Compact-II:

Rj (x) =
(1 t j )

6 (6 + 36t j + 82t j
2
+ 72t j

3
+ 30t j

4
+ 5t j

5 ),   0 t j 1

0                                                                            t j >1
(27)
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where (t j = r j/s j) and s j , the normalizing distance, is the radius of the domain of compact support.  The

shape functions (eq. (19)) obtained from the Compact-I and Compact-II functions possess all the

properties in equations (20)–(22).  Several other forms of compact support functions can be found in

Wendland (1999) and Wu (1995).  The functions in equations (26) and (27) were specifically chosen

because they were previously adapted and used as test functions in the MLPG method (Atluri and Shen,

2002a).

Hybrid RBF Interpolation

Most of the classical RBFs shown in table 1 and the compactly supported functions in equations (26)

and (27) cannot represent simple polynomials exactly at every point in the domain of the interpolation

(Wang and Liu, 2002a and 2002b); they can represent the polynomial values exactly only at the N scat-

tered points where polynomial values are prescribed.  Figures 2 and 3 show RBFs (the thin curves)

obtained from the compact RBF in equation (26) with s j  = 0.6 using 5 nodes in the interval 11 x

for a constant polynomial of value unity and a linear polynomial, respectively.  The function values are

evaluated at the five nodes and are prescribed as the uj values in equation (17).  The values of u are

evaluated by using equation (17) at 200 points in the interval 11 x  and are plotted in  these figures

(the thick black curves).  The exact functions are also shown (thick gray lines).  The compact RBF inter-

polation recovers the polynomial values exactly only at the five nodal points, and elsewhere the values of

the polynomials deviate from the exact values somewhat significantly.  The deviation from the exact

values can, however, be reduced by increasing the number of nodes in the domain 11 x .

To improve the polynomial accuracy of the solutions, Powell (1992) suggested augmenting the radial

basis interpolation by adding polynomial basis functions as

u(x) = Rj (x) a j
j=1

N
+ pk (x) zk
k=1

m
(28)

1 2 3 4 5Node:

0 .5 1.0 1.5

1.0

Interpolated

Exact, f = 1

.5

0

Compact RBF
centered at node 4

x

u = f(x)

x

Figure 2.  RBF values that correspond to interpolated and exact values of a constant polynomial.
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1 2 3 4 5Node:

0 .5 1.0 1.5

2.0

Interpolated

Exact, f = 1 + x

x

1.0

0

Compact RBF

x

u = f(x)

Figure 3.  RBF values that correspond to interpolated and exact values of a linear polynomial.

where Rj, aj, and N are as shown in equation (8), p (x) are polynomial basis functions, zk are the unkown

coefficients associated with the kth polynomial term, and m is the order of the polynomial basis function.

Equation (28) is written in matrix form as (Wang and Liu, 2002a)

 

u(x) = R
T(x) a + p

T(x) z

= R
T(x) p

T(x)
a

z

(29)

where a and RT(x) are as in equation (12), and

  

z = z1, z2, z3, …, zm{ }
T

p
T(x) = p1(x), p2 (x), p3(x), …, pm (x)[ ]

(30)

In 1-D problems,

  
p
T(x) = 1, x, x2, …, xm 1

The interpolation is forced to pass through the N points, with the constraint

 

pk (x j )a j
j=1

N
= 0, k = 1, 2, …, m (31)



9

imposed to guarantee unique approximation (Wang and Liu, 2002a).  The set of equations to determine

the coefficients {a} and {z} can then be written as

RB PB

PB
T 0

a

z
=
u

0
 ,  or

[G]
a

z
=
u

0

(32)

where uT and RB are defined in equations (14) and (15), and

  

PB =

p1(x1) p2 (x1) pm (x1)

p1(x2 ) p2 (x2 ) pm (x2 )

p1(xN ) p2 (xN ) pm (xN )

(33)

The unknown coefficients in equation (32) are obtained as

a

z
= [G] 1

u

0
(34)

The interpolating functions u(x) in equation (29) can now be rewritten as

 

u(x) = R
T(x) p

T(x)  [G] 1 u

0

= j (x)u j
j=1

N
(35)

The nodal shape functions are then

l (x) = Rj (x) jl
j=1

N
+ pk (x) (N+k)(l)
k=1

m
(36)

where pq are the elements of the matrix [G] 1.  The shape functions in equation (36) possess the

properties of equations (20) and (21).  The derivatives of the shape functions are easy to evaluate using

equation (36) as

l (x)
x

=
Rj (x)

x jl
j=1

N
+

pk (x)
x (N+k)(l)

k=1

m

l (x)
y

=
Rj (x)

y jl
j=1

N
+

pk (x)
y (N+k)(l)

k=1

m
(37)

where ( Rj / x)  and ( Rj / y)  are as defined in equations (24) and (25).
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Consider again the constant and linear polynomials depicted in figures 2 and 3.  When a constant

polynomial basis (pT(x) = [1]) is included in the interpolation, as described by equations (28)–(37),

the constant polynomial of value unity (see fig. 2) is recovered exactly at all locations in the domain

(the solution coincides with the exact solution in the figure).  Similarly, when a linear polynomial basis

(pT(x) = [1, x]) is included in the interpolation, the values of the linear polynomial (fig. 3) are recovered

exactly at all locations in the domain.

Interpolation Schemes—Summary

In the previous section, two interpolation schemes were presented for C0 problems:  the MLS interpo-

lation and the RBF interpolation.  In this section, the FEM, MLS, and RBF interpolations are compared in

terms of the continuity of the secondary variables.  For C0 problems, the secondary variable is, for

example, (q = du/dx).  Examples of trial functions formed for each of the interpolations are presented

schematically in figure 4.

In the FEM, u is chosen as a piecewise linear function, as is shown in figure 4(a).  (For simplicity, the

nodal shape functions for element e are shown, and the shape functions for the remaining elements are

omitted from the figure.)  The slopes at node j, evaluated from elements e and e + 1, are obviously

unequal.  In general, all secondary variables in the FEM are discontinuous across element boundaries

because of the piecewise nature of the approximation for the trial function.  Postprocessing techniques are

required to achieve smooth distributions for the secondary variables.

As discussed previously, an MLS interpolation is a scheme that fits a smooth function through an

assumed set of fictitious nodal values.  Because the trial functions formed by the MLS interpolation are

smooth (see fig. 4(b), in which shape functions are omitted entirely from the figure), the secondary

variables are continuous at every point in the domain of the trial functions.

In the RBF interpolation scheme, a smooth function passes through the set of actual nodal values

obtained from the radial basis shape functions.  Again, because these trial functions are smooth (see

fig. 4(c), only shape function for node j is shown), the secondary variables are continuous.

Beam Problem (C1) Interpolation Schemes

This section presents the interpolation schemes used in the RPG method for beam (C1) problems.  The

GMLS interpolation is discussed first; then, the shape functions for both the radial basis and hybrid

interpolations are presented.  These shape functions will be used in the beam problem implementation of

the RPG method.

Generalized MLS (GMLS) Interpolation

The GMLS approximations are used for beam problems in the traditional MLPG method (Atluri, Cho,

and Kim, 1999; Phillips and Raju, 2002; Raju and Phillips, 2002, 2003a, and 2003c).  The primary
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u

x
j + 1

Nodal shape functions

e + 1e

j

(a) FEM.

u

x
j + 1j

(b) MLS.

u

x
j + 1j

(c) RBF.

Figure 4.  Comparison of FEM, MLS, and RBF trial functions for C0 problems.
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variables for these problems are the deflection w and the slope  (  = dw/dx).  The shape functions for w

and , using a local coordinate approach (Raju and Phillips, 2003a and 2003c), are

j
(w)(x) = pg ( j ) [A] 1[P]T[ ][ ]gj

g=1

m
      and

j
( )(x) = pg ( j ) [A] 1[Px ]T  [ ][ ]gj

g=1

m
(38)

or

j
(w)

= pg [A] 1[Bw ]
gj

g=1

m
(39a)

and

j
( )

= pg [A] 1[B ]
gj

g=1

m
(39b)

where

[Bw ] [B ][ ] = [P]T[ ] [Px ]
T[ ] (40)

In equations (38)–(40), p( ) is a polynomial basis function, and

[A] = [P]T[ ][P]+ [Px ]
T[ ][Px ] (41)

In equation (41), [P] and [Px] are (n, m) matrices, and [ ] is a diagonal (n, n) matrix defined as

 
P[ ] = pT( 1) pT( 2 ) … pT( n )

T
(42a)

 
Px[ ] = px

T( 1) px
T( 2 ) … px

T( n )
T

(42b)

 

=

1(x)

2 (x)

n (x)

(43)
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where k = xk x j , k = 1, 2, …, n,

 
pT( ) = 1, , 2, …

m 1 (44a)

and

 

px
T( ) =

dpT( )
dx

= 0, 1, 2 , … (m 1) m 2 (44b)

as

d

dx
( ) =

d

d
( ) (45)

In C1 problems, the MLPG method requires the first, second, and third derivatives (Atluri, Cho, and Kim,

1999; Gu and Liu, 2001a; Phillips and Raju, 2002; and Raju and Phillips, 2003a).  The first derivatives of

j are

d j
(w)

dx
= j,x

(w)
= pg,x  [A] 1[Bw ] ( )

gj
g=1

m

         + pg  [A] 1[Bw ],x +  [A],x
1[Bw ] ( )

gj
(46a)

and

j,x
( )

= pg,x  [A] 1[B ] ( )
gj

g=1

m

        + pg  [A] 1[B ],x +  [A],x
1[B ] ( )

gj

(46b)

where [A],x
1  is defined in equation (7).  The second and third derivatives involve considerably more

complex expressions containing [A] 1,  [A],x
1,  [A],xx

1 ,  and so on, and the detailed derivations are given

in Phillips and Raju (2002) and are not repeated here.  For thin plate problems (2-D C1 problems), these

derivatives become even more complicated (see Long and Atluri, 2002 for details).  Evaluation of the

derivatives is computationally expensive, which appears to be a disadvantage of using the GMLS for the

trial functions.  Thus, an alternate formulation for trial functions that is computationally simple and yet as

accurate as the GMLS approximations is sought.  The RBFs appear to be good candidates for achieving

such a purpose because the shape functions obtained from radial basis interpolation are simpler than the

shape functions presented previously for the GMLS.  More importantly, the derivatives of the radial basis

shape functions are simple and involve considerably fewer matrix inversion and multiplication operations

than the derivatives of the GMLS shape functions.  The RBFs are discussed next.
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RBF Interpolation

In the beam problems considered in this paper, the deflection w and the slope   = dw/dx are the pri-

mary variables.  The interpolating function for w(x) is assumed to be of the form

 
w(x) = R1(x)a1 + S1(x)b1 + R2 (x)a2 + S2 (x)b2 + … +RN (x)aN + SN (x)bN (47)

where aj and bj, j = 1, 2, …, N, are unknown coefficients, Rj(x) are the RBFs, and Sj(x) = dRj(x)/dx at

node j.  Because of the direct relationship between the slope and the deflection, the approximating

functions for  cannot be chosen independently from the functions for w (eq. (47)); thus, the approxima-

tions for  are written as

 

(x) =
dw(x)

dx
=
dR1(x)

dx
a1 +

dS1(x)

dx
b1

 +
dR2 (x)

dx
a2 +

dS2 (x)

dx
b2 + … +

dRN (x)

dx
aN +

dSN (x)

dx
bN (48)

In matrix form, equation (47) is written as

w(x) =QT(x){c} (49)

where

 

QT(x) = R1(x) S1(x) R2 (x) S2 (x) … RN (x) SN (x)[ ]

{c} = a1 b1 a2 b2 … aN bN{ }
T

(50)

Similarly, equation (48) is written as

(x) =
dQT(x)
dx

{c} (51)

where

 

dQT(x)
dx

=
dR1(x)

dx

dS1(x)

dx

dR2 (x)

dx

dS2 (x)

dx
…

dRN (x)

dx

dSN (x)

dx
(52)

The interpolations in equations (50) and (52) are required to pass through N nodal values, which yields

[QB]

(2N , 2N )

{c}
(2N , 1)

= {d}
(2N , 1)

(53)

where

 
{d}T = w1 1 w2 2 … wN N{ } (54)
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is the vector of nodal values of w and  at the N nodes, and

 

[QB] =

R1(x1) S1(x1) R2 (x1) S2 (x1) … RN (x1) SN (x1)

dR1(x1)

dx

dS1(x1)

dx

dR2 (x1)

dx

dS2 (x1)

dx
…

dRN (x1)

dx

dSN (x1)

dx
R1(x2 ) S1(x2 ) R2 (x2 ) S2 (x2 ) … RN (x2 ) SN (x2 )

dR1(x2 )

dx

dS1(x2 )

dx

dR2 (x2 )

dx

dS2 (x2 )

dx
…

dRN (x2 )

dx

dSN (x2 )

dx

R1(xN ) S1(xN ) R2 (xN ) S2 (xN ) … RN (xN ) SN (xN )

dR1(xN )

dx

dS1(xN )

dx

dR2 (xN )

dx

dS2 (xN )

dx
…

dRN (xN )

dx

dSN (xN )

dx

(55)

The unknown coefficients in equation (53) are obtained as

{c} = [QB]
1{d} (56)

The interpolation for w in equation (49) can be written as

w(x) =QT(x)[QB]
1{d}

= j (x)d j
j=1

2N
(57)

where  are the nodal shape functions

 

(x) =QT(x)[QB]
1

= 1
(w)(x) 1

( )(x) 2
(w)(x) 2

( )(x) … N
(w)(x) N

( )(x) (58)

From equation (58), the individual shape functions for deflection and slope, j
(w)(x)  and j

( )(x) , are

l
(w)(x) = Rk (x) (2k 1)(2l 1) + Sk (x) (2k)(2l 1)( )

k=1

N

l
( )(x) = Rk (x) (2k 1)(2l) + Sk (x) (2k)(2l)( )

k=1

N
(59)
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where 
kl

 are the elements of the matrix [QB] 1.  The derivatives of these shape functions are easily

evaluated as

d l
(w)(x)

dx
=

dRk (x)

dx (2k 1)(2l 1) +
dSk (x)

dx (2k)(2l 1)
k=1

N

d l
( )(x)

dx
=

dRk (x)

dx (2k 1)(2l) +
dSk (x)

dx (2k)(2l)
k=1

N
 

(60)

d2 l
(w)(x)

dx2
=

d2Rk (x)

dx2
(2k 1)(2l 1) +

d2Sk (x)

dx2
(2k)(2l 1)

k=1

N

d2 l
( )(x)

dx2
=

d2Rk (x)

dx2
(2k 1)(2l) +

d2Sk (x)

dx2
(2k)(2l)

k=1

N
(61)

d3 l
(w)(x)

dx3
=

d3Rk (x)

dx3
(2k 1)(2l 1) +

d3Sk (x)

dx3
(2k)(2l 1)

k=1

N

d3 l
( )(x)

dx3
=

d3Rk (x)

dx3
(2k 1)(2l) +

d3Sk (x)

dx3
(2k)(2l)

k=1

N
(62)

Hybrid RBF Interpolation

As discussed for C0 problems, to improve the polynomial accuracy of the solutions, interpolations

involving both RBFs and polynomial basis functions are considered as

 

w(x) = Q
T(x) {c} + p

T(x) {z}

= Q
T(x) p

T(x)
c

z

(63)

where {c} and QT(x) are as in equations (50), and pT(x) are the polynomial basis functions

  

p
T(x) = p1(x), p2 (x), p3(x), …, pm (x)[ ]

= 1, x, x2, …, xm 1

and {z} are the unknown coefficients associated with pT(x)

  
{z} = z1, z2, z3, …, zm{ }

T
(64)
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The interpolation of equation (63) is required to pass through the N points with constraints

pk (x j )c2 j 1 +
dpk (x j )

dx
c2 j

j=1

N
= 0 (65)

where k = 1, 2, …, m, and {c} are the unknown coefficients in equations (50) (Wang and Liu, 2002a and

2002b).  Equation (65) is imposed to guarantee a unique approximation.  The set of equations to

determine the coefficients {c} and {z} is thus written as

QB TB

TB
T 0

c

z
=
d

0
   or

[ ]
c

z
=
d

0

(66)

where {d}T and [QB] are defined in equations (54) and (55), and [TB] is a (2N, m) matrix

  

TB =

p1(x1) p2 (x1) pm (x1)

dp1(x1)

dx

dp2 (x1)

dx

dpm (x1)

dx
p1(x2 ) p2 (x2 ) pm (x2 )

dp1(x2 )

dx

dp2 (x2 )

dx

dpm (x2 )

dx

p1(xN ) p2 (xN ) pm (xN )

dp1(xN )

dx

dp2 (xN )

dx

dpm (xN )

dx

(67)

The unknown coefficients in equation (66) are obtained as

c

z
= [ ] 1

d

0
(68)

The interpolating function for w in equation (63) is now written as

 

w(x) = Q
T(x) p

T(x)  [ ] 1 d

0

= j (x)d j
j=1

2N

(69)
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where  are the nodal shape functions

  

(x) = Q
T(x) p

T(x)  [ ] 1

= 1
(w)(x) 1

( )(x) 2
(w)(x) 2

( )(x) … N
(w)(x) N

( )(x) (70)

From equation (70), the shape functions for the deflection and slope j
(w)(x)  and j

( )(x)  may be written

as

l
(w)(x) = Rj (x) (2 j 1)(2l 1) + S j (x) (2 j)(2l 1)( )

j=1

N

+ pk (x) (2N+k)(2l 1)
k=1

m

l
( )(x) = Rj (x) (2 j 1)(2l) + S j (x) (2 j)(2l)( )

j=1

N

+ pk (x) (2N+k)(2l)
k=1

m

(71)

where kl are the elements of the matrix [ ] 1.  The derivatives of these shape functions are easy to

evaluate, as in equations (60)–(62).

MLPG Equations for Beam (C1) Problems

Beam problems are governed by the fourth-order equation

EI
d4w

dx4
= f     in   0 x L (72)

subjected to four boundary conditions, two at each end (x = 0 and x = L).  The boundary conditions are on

deflection w, slope , moment M, and shear force V, where

=
dw

dx
    

M = EI
d2w

dx2
    

V = EI
d3w

dx3

(73)
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The essential boundary conditions are on w and , while the natural boundary conditions are on V and M.

The boundary condition sets on w and V and  and M are disjoint, that is, if w is prescribed, V cannot be

prescribed, and vice versa.

The MLPG equations are derived using a weighted residual weak form of the governing equation

(eq. (72)).  The MLPG equations are (Atluri, Cho, and Kim, 1999; Phillips and Raju, 2002; and Raju and

Phillips, 2002 and 2003a)

K(node)d +K(bdry)d f (node) f (bdry) = 0 (74)

where the superscript “bdry” denotes boundary,

 
dT = w1 1 w2 2 … wN N{ } (75a)

are the nodal values of deflections w and slopes  at the N nodes in the model of the beam, and

K(node) = kij
(node)

(75b)

K(bdry) = kij
(bdry)

(75c)

with

kij
(node)

= EI  

d2
i
(w)

dx2

d2
j
(w)

dx2
dx

s
(i)

d2
i
(w)

dx2

d2
j
( )

dx2
dx

s
(i)

d2
i
( )

dx2

d2
j
(w)

dx2
dx

s
(i)

d2
i
( )

dx2

d2
j
( )

dx2
dx

s
(i)

+ nxEI  
i
(w) d

3
j
(w)

dx3 i
(w) d

3
j
( )

dx3

i
( ) d

3
j
(w)

dx3 i
( ) d

3
j
( )

dx3
sI
(i)

nxEI  

d i
(w)

dx

d2
j
(w)

dx2

d i
(w)

dx

d2
j
( )

dx2

d i
( )

dx

d2
j
(w)

dx2

d i
( )

dx

d2
j
( )

dx2
sI
(i)

(75d)
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kij
(bdry)

= w
i
(w)

j
(w)

i
(w)

j
( )

i
( )

j
(w)

i
( )

j
( )

sw
(i)

+ nxEI

i
(w) d

3
j
(w)

dx3
i
(w) d

3
j
( )

dx3

i
( ) d

3
j
(w)

dx3
i
( ) d

3
j
( )

dx3
sw
(i)

+

d i
(w)

dx

d j
(w)

dx

d i
(w)

dx

d j
( )

dx

d i
( )

dx

d j
(w)

dx

d i
( )

dx

d j
( )

dx
s
(i)

nxEI

d i
(w)

dx

d2 j
(w)

dx2
d i
(w)

dx

d2 j
( )

dx2

d i
( )

dx

d2 j
(w)

dx2
d i
( )

dx

d2 j
( )

dx2
s
(i)

(75e)

f (node)
=

i
(w) f  dx

s
(i)

i
( ) f  dx

s
(i)

(75f)

and

 

f (bdry) = nxM

d i
(w)

dx

d i
( )

dx
sM
(i)

+ nxV
i
(w)

i
( )

sV
(i)

+ ww
i
(w)

i
( )

sw
(i)

+

d i
(w)

dx

d i
( )

dx
s
(i)

(75g)
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where i = 1, 2, …, N and j = 1, 2, …, n, and n is the number of nodes in the domain of definition of the

trial function.  In these equations, i
(w)

 and i
( )

 are components of the test functions, j
(w)

 and j
( )

are the shape functions, s
(i)  (see fig. 5(b)) is the local subdomain of the test function at node i (see

fig. 5(a)), nx is the unit outward normal to s
(i)  (nx = 1 at the left boundary point, and nx = +1 at the

right boundary point), and s
(i)  are the boundary points of s

(i)  (see fig. 5(b)).  When s
(i)  coincides with

an interior point, that point is denoted sI
(i),  and sw

(i) ,  s
(i),  sM

(i) ,  and sV
(i)

 denote the boundary points

where s
(i)  intersects the boundary when w, , M, and V are prescribed, respectively.  Also in these

equations, w  and  are penalty parameters to enforce the essential boundary conditions, and 
 
w,  

 
,

 
M,  and  V  are prescribed values of the deflection, slope, moment, and shear, respectively.  See Raju and

Phillips (2003a) for a detailed explanation of these terms.

The system of equations presented in equations (74)–(75g) is the general set of equations valid for any

set of trial and test functions.  In this paper, a Petrov-Galerkin method is used; the test functions are

chosen to be different from the trial functions.  The choices for the trial and test functions are now briefly

discussed.

1 2 k j i N

x

(a) N-node model of beam.

Shape function of node j

Component of
test function
node i

Domain of trial
function (2sj) 

sj 

so
ijk

(i)

(i)(i)

(b) Components of trial and test functions.

Figure 5.  Comparison of domains of trial and test functions.
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Trial Functions

The trial functions are chosen as

w(x) = j
(w)(x)wj + j

( )(x) j( )
j=1

N
(76)

where j
(w)(x)  and j

( )(x)  are the radial basis shape functions of equations (59), and w j and j are the

nodal values of w and  at the N nodes (eq. (54)).  Note that in MLPG algorithms that employ the moving

least squares interpolation scheme for the trial functions, the values d (eq. (75a)) are fictitious nodal

values d̂.   In this paper, RBFs pass through the actual nodal values d.

Test Functions

The test function v is assumed as in Raju and Phillips (2003a) as

v(x) = µi
(w)

i
(w)(x)+ µi

( )
i
( )(x) (77)

where µi
(w)

and µi
( )

 are arbitrary constants.  In this paper, the i
(w)(x) components of the test functions

are chosen as power weight functions (Raju and Phillips, 2003a)

i
(w)(x) =

 1
di
so

2  4

    if     0 di so  

 0                         if     di > so

(78)

with di = ||x – xi||.  In equation (78), so is a user-defined parameter that determines the extent of the test

functions (and hence s; see fig. 5).  The components of the test functions chosen for  are the first

derivatives of the components of the test functions chosen for the primary variable w, that is,

i
( )

=
d i
(w)

dx
(79)

For this power function, the values of i
(w),  i

( ),  (d i
(w) /dx),  and (d i

( )/dx)  are zero when di = so.

As discussed in Raju and Phillips (2003a), when this test function is used, the k (node) in equa-

tion (75d) reduces to

kij
(node)

= EI  

d2
i
(w)

dx2

d2
j
(w)

dx2
dx

s
(i)

d2
i
(w)

dx2

d2
j
( )

dx2
dx

s
(i)

d2
i
( )

dx2

d2
j
(w)

dx2
dx

s
(i)

d2
i
( )

dx2

d2
j
( )

dx2
dx

s
(i)

(80)
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Numerical Evaluations

In this section and the sections that follow, several example problems are presented to validate the

RPG method for beam (C
1
) problems.  First, the beam configurations and models used in the numerical

evaluations are described, and then three patch test problems are described.  Next, the compact RBF

interpolations and their hybrid form are used in the RPG method to study the patch tests and simple

mixed boundary value problems.  The performance of noncompactly supported RBFs is presented next.

Finally, the RPG method with a noncompact cubic function is used to study problems with complex

loading and boundary conditions.

Beam Configurations and Models

A beam of constant flexural rigidity EI and a length of 4l is considered.  The length 4l is specifically

chosen to avoid scaling by a unit length l.  Five models with 5, 9, 17, 33, and 65 nodes uniformly distrib-

uted along the length of the beam are considered.  Figure 6 shows a typical 17-node model.  The distances

between the nodes ( x/l) in these models are 1, 0.5, 0.25, 0.125, and 0.0625 for the 5-, 9-, 17-, 33-, and

65-node models, respectively.  Numerical integration (a 12-point Gaussian integration) is used to

integrate the terms in the system of equations shown in equations (75d) and (75f).

1 92

x

16 17∆x

4l

Figure 6.  A 17-node model of beam.

Patch Tests

The radial basis MLPG (RPG) method is evaluated by applying the method to simple patch-test prob-

lems.  The problems considered are

(a) rigid body translation:

w(x) = 0             =
dw

dx
= 0 (81a)

(b) rigid body rotation:

w(x) = 1x          = 1 (81b)

(c) constant-curvature condition:

w(x) = 2x
2/2            = 2x (81c)

where 0, 1, and 2 are arbitrary constants.  The third patch test is equivalent to the problem of a

cantilever beam with a moment, M = EI(d 2w/dx2) = EI 2, applied at x = 4l.  The deflection w and the

slope  that correspond to problems (a), (b), and (c) are prescribed as essential boundary conditions
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(EBCs) at x = 0 and x = 4l.  With these EBCs, the beam problems are analyzed by using the RPG method

with no polynomial basis.  If the RPG method recovers the exact solution at all the interior nodes and at

every arbitrary point of the beam, then the method passes the patch test.

Compact RBF

The compact radial functions described by equations (26) and (27) were considered first.  When using

the compactly supported functions, equations (55)–(62) are evaluated with N = n, the number of nodes in

the influence domain of the point x under consideration (Wang and Lu, 2002a and 2002b).  This use

of the compact functions forces the [QB] of equation (55) to become a (2n, 2n) matrix that must be evalu-

ated once for every node in the model.  For these functions, the value of so (eq. (78)) is chosen as

(so /l = 2 x/l), and the value of sj (eqs. (26) and (27)) is chosen as (sj/l = 8 x/l).

The RPG method with no polynomial terms was unable to reproduce the exact solutions in

equation (81) and thus failed the patch tests.  A quadratic polynomial basis (m = 3; pT(x)  = [1, x, x
2
],

px
T(x)  = [0, 1, 2x]) was used in equation (63), increasing the size of the [QB] matrix to (2n + m, 2n + m).

The RPG method with a polynomial basis (the hybrid RPG method) reproduced the solutions in equa-

tion (81) to machine accuracy, thus passing the patch tests.

Next, mixed boundary value problems were considered.  The first problem considered was a cantilever

beam with a tip load (fig. 7).  Because the exact solution for this problem is cubic in x, the hybrid RPG

method with a cubic polynomial basis function reproduced the exact solution.  A simply supported beam

subjected to a uniformly distributed load (fig. 8) was considered next.  Because the exact solution for this

problem is quartic in x, the hybrid RPG method with quartic basis yielded the solution exactly.

P

L

x

z, w

Figure 7.  Cantilever beam with tip load.

q

L

x

z, w

Figure 8.  Simply supported beam subjected to uniformly distributed load.
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As with the finite element method and the conventional MLPG method (Phillips and Raju, 2002; and

Raju and Phillips, 2003a), the hybrid RPG algorithm should be robust enough to yield good solutions

when a low order polynomial basis function is used.  A convergence test was conducted to study the

performance of the hybrid method in solving the problems in figures 7 and 8.  A quadratic polynomial

basis function was used.  For all models (5, 9, 17, 33, and 65 nodes), the method did not yield meaningful

results.  Thus, it was concluded that as long as the order of the polynomial basis was sufficient to repro-

duce the solution exactly, the polynomial terms overpowered the RBFs.  This condition is too restrictive,

and hence compact radial functions are dropped from further consideration.

Numerical Evaluations With Noncompactly Supported RBF

The noncompact functions of table 1 are considered next.  As stated previously, in these functions,

t j =
rj
s j

(82)

where rj = ||x – xj||, and sj is some normalizing distance, usually chosen to be the entire problem domain,

 (here,  is Lx0 ).  Because sj covers the entire problem domain, [QB] is an (2N, 2N) matrix that

is evaluated and inverted once.  As a result, the current RPG method involves one inversion of a large

matrix and one solution of a large system of equations ([QB] 1 to obtain the shape functions and a

solution involving [K]).  In contrast, the conventional MLPG method involves many inversions of smaller

matrices to obtain the shape functions and their derivatives and the solution of a large system of equations

that involves the [K] matrix.  Because of this difference, the RPG method may not be more compu-

tationally efficient than the MLPG method for large models.

Upon examination of all the functions in table 1, the cubic function (with c = 0)

Rj (x) = t j
3

(83)

was chosen because it is simple and gives nonzero second and third derivatives, as required by the weak

form.  (Note that R j(x) = t j cannot be chosen because the second and higher order derivatives are zero.)

The RPG method using equation (83) was applied to the patch tests represented by equations (81).  The

method successfully reproduced the exact solutions to machine accuracy, thus passing all the patch tests.

Additionally, all functions of the form

Rj (x) = t j
(2z 1)

(84)

where z > 1, performed successfully, although t j
3

 yielded the best results (Raju, Phillips, and

Krishnamurthy, 2003b; and Raju and Phillips, 2003d).  Note that when this function is chosen, the

polynomial terms are not included.

Next, the RPG method with the RBF in equation (83) was used to analyze mixed boundary value

problems.  In the method, a 12-point Gaussian integration was used to integrate the weak form, and the

value of (so /l), which defines the extent of the test functions (see eq. (78)), was set as (so /l = 2 x /l).

Because a noncompact function was chosen for the trial functions, the value of (s j/l) (eq. (82)) was set

as (s j/l = L/l).  For the cantilever beam with a tip load in figure 7, the RPG method yielded the exact
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solution.  The simply supported beam problem with a uniformly distributed load (fig. 8) was analyzed by

using 17-, 33-, and 65-node models.  The maximum deflection values (i.e., the deflection at (x = L/2)), for

these three models, obtained by using the RPG method and the conventional MLPG method with a quad-

ratic polynomial basis function, are compared in table 2.  In the MLPG method, a 20-point Gaussian

integration was used to integrate the weak form (Raju and Phillips, 2003a), the value of (so /l) was set as

(so /l = 2 x /l), and the value of (s j/l) was set as (s j/l = 8 x /l).  From table 2, it is seen that the RPG

method yields solutions that are as accurate as the solutions obtained from the conventional MLPG

method.

Table 2.  Comparison of Maximum Deflection
Values Obtained Using RPG and MLPG

Methods (wExact = 5qL4/384EI)

(w/wExact) at x = L /2
Model

RPG MLPG

17-node 0.982 0.993

33-node 1.002 1.012

65-node 1.003 1.015

The results obtained for deflection, slope, moment, and shear by using the 65-node model are pre-

sented in figure 9.  In this figure, the RPG results are compared to the exact solution and to the solution

obtained when using the conventional MLPG method with a quadratic polynomial basis function.  The

RPG values for deflection, slope, and moment are as accurate as the MLPG values and are in excellent

agreement with the exact values.  In addition, the RPG values for shear converge with model refinement.

The MLPG solution for the shear is erratic and is not shown in figure 9.  In the MLPG solution, the

quadratic basis function is insufficient to accurately calculate the third derivatives for this problem, and

the method cannot recover the values with model refinement; the solution for the shear converges only as

the order of the basis function is increased to quartic (Phillips and Raju, 2002).  Similar results were

obtained by using the 17- and 33-node models; these results are not shown.  The results discussed for this

problem verify a perceived advantage of the RPG method over the MLPG method; namely, accurate

solutions are obtained with simpler evaluation of the shape function derivatives.

Problems With Complex Loading and Boundary Conditions

The RPG method with the RBF in equation (83) was next applied to the complex beam problems with

the loading and boundary conditions shown in figure 10.  The problems considered were (a) a cantilever

beam (L = 2l) long with a uniformly distributed load on a portion of the beam shown in figure 10(a); (b) a

continuous beam (L = 4l) long with the additional support in the center of the beam (fig. 10(b)); and (c) a

fixed continuous beam (L = 3l) long with a hinge, as shown in figure 10(c).

The RPG solution (with (so /l = 4 x/l)) for the cantilever beam problem (problem (a)) exhibited con-

vergence with model refinement.  These results are consistent with those reported in Raju and Phillips

(2003a), in which this problem was studied by using the conventional MLPG method.  The exact MLPG

and RPG values for deflection and moment for this problem were obtained by using a 65-node model and

are compared in figure 11 (with parameters as reported previously for the simply supported beam prob-

lem).  The RPG method handled the load discontinuity well and yielded results in overall agreement with

the exact solutions.
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(b) Secondary variables (Note:  VMLPG not shown).

Figure 9.  RPG, MLPG, and exact solutions obtained using 65-node model for simply supported beam

subjected to uniformly distributed load.

For the continuous beam problem (fig. 10(b)), the RPG method yielded very accurate results for both

the primary and secondary variables and handled the discontinuity caused by the additional support well.

The MLPG, RPG, and exact moment distributions are shown in figure 12.  For this problem, the MLPG

method required a large number of nodes to obtain an accurate solution (Raju and Phillips, 2003a), but the

RPG method yielded accurate results when the smaller nodal (17-node and 33-node) models were used.

These results again verify perceived advantages of the RPG method over the MLPG method; accurate

results can be obtained by the RPG method for comparable computing efforts.

Next, the hinge problem shown in figure 10(c) was considered.  Because the hinge at (x = l) (see

fig. 10(c)) cannot admit the moment, there is a slope discontinuity at (x = l).  Thus, there are two separate

slopes, L and R, just to the left (x = l ) and just to the right (x = l+) of the hinge, respectively, while the

deflections, wL and wR, are equal.  Three models—14-node, 26-node, and 50-node—were considered.

The 14-node model consisted of 5 nodes in the left segment ( 0 x l ) of the beam and 9 nodes in the

right segment ( l x 3l ) of the beam.  Similarly, the 26-node and 50-node models were composed

of 9 nodes in the left and 17 nodes in the right, and 17 nodes in the left and 33 nodes in the right,
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Figure 10.  Cantilever and continuous beams with complex loading and boundary conditions.

respectively.  The problem was analyzed by using the MLPG and RPG methods.  For both methods,

the value of (so /l) was set as (so /l = 2 x /l).  For the MLPG method, the value of (s j/l) was set as

(s j/l = 8 x/l), and for the RPG method, the value of (s j/l) was set as (s j/l = 1) for the left segment and

(s j/l = 2) for the right segment.

The RPG and the exact solutions for the deflection and slope at x  = l, 2l, and 3l are compared in

table 3.  In this table, the RPG solutions that were obtained with the three nodal refinements are pre-

sented.  Accurate solutions are obtained with the coarse model, and the solutions improve with nodal

refinement.
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Figure 11.  RPG, MLPG, and exact solutions obtained using 65-node model for cantilever beam with

uniformly distributed load on portion of beam.
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Figure 12.  Comparison of RPG (33-node model), MLPG (65-node model), and exact solutions for moment of

continuous beam subjected to uniformly distributed load.

Table 3.  Comparison of RPG Results and Exact Solutions at Several Locations Along Beam

Model w /wExact (x = l) L / Exact
L (x = l) R / Exact

R (x = l) / Exact (x = 2l) / Exact (x = 3l)

14-node 0.9769 0.9748 0.9679 0.9774 0.8944
26-node 0.9814 0.9789 0.9798 0.9817 0.9656
50-node 0.9880 0.9867 0.9868 0.9882 0.9755

Exact values are w(x = l) =
ql4

6EI
,  L

=
11ql3

48EI
,  R

=
3ql3

16EI
,  (x = 2l) =

ql3

12EI
,  (x = 3l) =

ql3

48EI
.
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Figure 13.  RPG, MLPG, and exact solutions for deflection of fixed continuous, hinged beam subjected

to uniformly distributed load.
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Figure 14.  RPG, MLPG, and exact solutions for moment distribution of fixed continuous, hinged beam

subjected to uniformly distributed load.

The RPG and MLPG solutions obtained with the 50-node model are compared in figures 13, 14, and

15 for deflection, moment, and shear force, respectively.  For the deflection and moment distributions,

both the RPG and MLPG solutions agree very well with the exact solutions.  The MLPG method is

unable to accurately represent the shear force; hence, this solution is not included in the figure 15 com-

parison.  The RPG solution, on the other hand, agreed very well with the exact solution.
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Figure 15.  RPG and exact solutions for shear force distribution of fixed continuous, hinged beam subjected

to uniformly distributed load (Note: MLPG not shown).

Concluding Remarks

A radial basis function (RBF) implementation of the meshless local Petrov-Galerkin (MLPG) method

in the study of Euler-Bernoulli beam problems was presented.  Like the conventional MLPG method, this

radial basis variation (RPG) is based on the local weak form developed from the classical weighted

residual form of the fourth-order governing differential equation.  In this method, rather than generalized

moving least squares (GMLS) interpolations, RBFs were used to develop the trial functions, and test

functions were chosen as simple weight functions, as in the conventional MLPG method.  Two types of

RBFs, compact and noncompact, were considered.  Compact RBF interpolations were developed with and

without including polynomial basis function terms, while noncompact RBF interpolations without

polynomial terms were considered.

The compactly supported RBFs did not perform well without polynomial terms in the computations.

When polynomial terms were included, the compactly supported RPG method passed the patch tests.

However, the method did not yield meaningful results for mixed boundary value problems unless the

order of the polynomial basis function was of the same order as the exact solution of the problem.  This

result restricts the use of the method.  Also, polynomial terms tended to overpower the RBFs; hence, the

use of compactly supported RBFs presented in this paper is not recommended in the RPG method.

The noncompactly supported cubic RBF performed very well when no polynomial terms were in-

cluded.  The use of RBFs rather than the traditional moving least squares interpolations reduced the

computing effort required to solve problems; substantially fewer matrix inversion and multiplication

operations were required by the RPG to evaluate the derivatives of the shape functions.  When noncom-

pactly supported RBFs were used, the RPG method involved one inversion of a large matrix to evaluate

the shape functions.  The RPG method with the cubic RBF yielded accurate solutions for the problems

studied; the method passed all the patch tests, and for mixed boundary value problems, achieved the same

accuracy in results as the conventional MLPG method, with comparable computing effort.  The RPG

method with a cubic radial basis also yielded very good results in contrast to the conventional MLPG

method, which could not yield consistently good results for problems with complex loading and boundary

conditions.  The accuracy of solutions obtained by the RPG method, combined with the computational

simplicity of using the RBFs rather than the GMLS interpolations to approximate the trial functions,

makes the RPG method a very attractive variation of the MLPG method.
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